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1 Introduction

Extracting the standard model or some supersymmetric (SUSY) extension of it from a

D-brane construction has been the focus of much recent work (see [1–3] for recent reviews).

In this framework, it has been recently understood that certain non perturbative effects

may lead to interesting new phenomena in low energy theories like a generation of a Ma-

jorana mass term or of Yukawa couplings [4, 5], not to mention new possible patterns of

SUSY breaking [6]–[14]. This proposal was further sharpened by the observation that to

really have such effects, orientifold planes [15]–[20] or closed string fluxes [21, 22] need to

be introduced.

To the extent of understanding non-perturbative effects in systems of D-branes a

derivation of four dimensional instantons in terms of D-branes was carried out in [23–

25]. These results where re-discussed in [26] where the field theory results were obtained

by string methods and a careful parallel between the ADHM formalism and the system

formed by bound states of parallel D(-1) and D3 branes was carried out. The reader should

be aware that the non perturbative effects alluded to in the previous paragraph are not of

this type. In general bound states of intersecting branes at angles (with more than four

Neuman-Dirichlet directions) or branes hosting generic non parallel magnetic fluxes lack

those bosonic moduli related to the instanton sizes and gauge orientations. This type of

instantons have been called exotic and besides their phenomenological applications are in-

teresting in itself since they are relevant for many non perturbative effects in string theory.

We will then focus our attention on the D(-1)D7 system in the presence of an orientifold

O7 plane. This is the simplest supersymmetric instance of an exotic instanton. We choose
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the orientifold projection in such a way to get an SO(N) gauge theory with SO(k) exotic

instantons which carry the right number of zero modes to generate a potential [16, 17].

From the low energy gauge theory viewpoint, this is an eight dimensional instanton. As

it is well-known, extending the idea of self-duality to dimensions greater than four is far

from obvious. Self-duality in four dimensions is tantamount to say that the field strength

is a (1, 1) complex form of Einstein-Kähler type. This was the starting point of the first

explorations in this field [27]. Later a solution to the quadratic Yang-Mills (YM) action

in eight dimensions was found [28] with gauge group SO(7). Finally an SO(8) gauge

connection was exhibited [29, 30] which was the generalization of the Hopf map S7 S3

−→ S4

in four dimensions to eight dimensions where the SO(8) gauge bundle is thought as the Hopf

map S15 S7

−→ S8. This latter solution has been recently related to D(-1) instantons on the

SO(8) gauge theory living in a D7 O7 worldvolume [31]: this interpretation is supported

by the observation [31] that in the limit of instanton zero size the quadratic YM term

vanishes. Moreover the quartic term, F 4, becomes proportional to the fourth Chern class

of the gauge bundle thus matching the D(-1) action. This proposal have been put on solid

grounds in [32] where instanton corrections to F 4-terms were computed in complete analogy

with the four dimensional case [33], [39] finding agreement with the heterotic results [40],

[47]. We remark that an ADHM construction of the moduli space of these ”exotic” eight

dimensional instantons is missing and therefore these D-brane techniques are at present

the only way to investigate this physics.

The SO(8) gauge theory in eight dimensions is very special. The theory is conformal,

in the sense that the coupling τ4 of the F 4-term does not run. Conformal invariance implies

that τ4 is constant over the moduli space since it cannot depend on dimensionful quantities

such as the vevs of the scalar field. Unlike in the conformal case, in the case of SO(N),

the coupling τ4 runs logarithmically with a one loop beta coefficient β4 = 1
2(8 − N). In

this paper we will deal with the non-conformal case: our gauge group will be SO(N) with

N > 8 and, therefore, β4 < 0. Like for Seiberg-Witten theory in four-dimensions, in

the non-conformal case the instanton measure acquires a dimension and the F 4 coupling

becomes a non trivial function of the scale generated by the exotic instantons and the

casimirs parametrizing the moduli space. The aim of this paper is to address the study of

multi-instanton corrections to the effective action of such eight-dimensional gauge theories.

We will also consider the case of N = 2 gauge theories in four dimensions which arises

from placing the D(-1)D7 system at a R
4/Z2 singularity that freezes the dynamics along

the orbifold four-plane. How to test these results against heterotic computations with non

trivial Wilson lines remains an open and challenging task.1

This is the plan of the paper: in section 2 and section 3 we review the main features

of the eight dimensional instanton and the localization algorithm. In section 4 and section

5 we compute the exotic prepotentials describing the dynamics of SO(N) gauge theories in

d = 8 and d = 4 dimensions respectively. Finally in section 6 we compute the correlators

of the chiral ring.

1We thank M. Bianchi for discussions on this issue.
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2 Eight dimensional instantons

In this section we review the proposal in [31, 32] for a D(-1)D7 description of the SO(8)

eight-dimensional instantons and extend it to the non conformal case with gauge group

SO(N). The field content of maximal supersymmetric YM theory in eight dimensions in-

cludes a gauge boson with field strength F , a complex scalar φ and two fermions of opposite

chirality. In complete analogy with the N = 2 SYM in d = 4 dimensions the chiral dynam-

ics of the SYM theory in eight dimensions is described by a prepotential F(Φ) in terms of

which the effective action can be written as

Seff =

∫

d8xd8θF(Φ) + h.c. (2.1)

with

Φ = φ +
√

2θΨ + Fµνθγµνθ + . . . (2.2)

the chiral eight-dimensional superfield. At the classical level Fcl = iτ4 TrΦ4 and the

effective action becomes

Seff = Re τ4

∫

R8

d8x t8 F 4 + iIm τ4

∫

R8

F ∧ F ∧ F ∧ F (2.3)

with

τ4 =
θ

2π
+ i

4!(2π)3

g2
(2.4)

and where t8 is the invariant eight-rank tensor of SO(8). As we said in the introduction, D(-

1) instantons are identified with zero size instantons with vanishing quadratic YM action

and therefore we will always discard this term from the effective action. The gauge theory

can be realized in terms of a stack of N D7-branes on top of a O7-plane. Instantons

correct the prepotential function F(Φ) and then the effective action. Instantons in the

eight-dimensional gauge theory are realized in terms of D(-1) branes with open strings

describing the instanton moduli space and the D(-1)D7 action gives the gauge dynamics

around the instanton background. By instantons here we refer to solutions of the Yang-

Mills equations with action

Scl = 2π τ4 k (2.5)

with k the fourth Chern class

k =
1

4!(2π)4

∫

R8

Tr F ∧ F ∧ F ∧ F (2.6)

An explicit solution in this class can be written as2

Fµν = − 2ρ2

(x2 + ρ2)2
γµν (2.7)

2 Using the properties of SO(8) gamma functions one finds that F satisfy ∗(F ∧ F ) = F ∧ F and

∗F = T ∧ F with Tµνσρ = η γ[µ γ†
ν γσ γ

†

ρ] η with η a fixed eight dimensional spinor. These two relations

define possible generalizations of the concept of four-dimensional self-duality to eight dimensions.
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with

γµν = Υ

(

0 0

0 γ
SO(8)
µν

)

ΥT (2.8)

and Υ ∈ SO(N)/SO(N − 8) parametrizing the orientation of the SO(8) instanton inside

SO(N). γ
SO(8)
µν = γ[µγ†

ν] with γµ the SO(8) gamma matrices satisfying γ(µγ†
ν) = δµν . This

is the solution originally found in [29, 30]. In the limit α′, ρ → 0 the quadratic YM action

evaluated at this solution vanishes and the quartic term matches that of the D(-1) instanton

with θ = C0 the RR 0-form and g2 = gs the string coupling [31].

The study of the D(-1)D7 dynamics follows closely that of its four-dimensional D(-

1)D3 analog with some important differences. First the O7-orientifold projection acts with

the same sign on the D7 and D(-1) Chan-Paton indices. This implies in particular that the

symmetry group of k D(-1) instantons in the SO(N) gauge theory coming from the D7-

branes is SO(k). This is in contrast with the four-dimensional case where SO(N) instantons

carry an Sp(k) symmetry group. Secondly, unlike in the D(-1)D3 case, open strings between

D(-1) and D7 branes have no bosonic zero modes and therefore interactions between the

two brane stacks are mediated only via the fermionic field ν (the Ramond ground state) in

the bifundamental of the SO(N) × SO(k) symmetry group. Like in the four-dimensional

case, the correlators in the gauge theory can be written as the moduli space integral [17, 32]

〈O〉 =
1

Z

∑

k

e2πikτ4(µ) µkβ4

∫

dMk,N e−Sk−νT φν O (2.9)

with τ4(µ) the logarithmically running F 4-coupling, β4 its one-loop beta function coefficient

and µ the cut-off energy scale regularizing the one-loop vacuum integrals (Annulus and

Moebius amplitudes with an end on the D7-branes) . Like in QCD, this regulator defines

the ”renormalization group invariant” q = Λβ4 = µβ4 e2πiτ4(µ) with no dependence on µ.

Sk is the instanton action following from the dimensional reduction of N = 1 d = 10 SYM

down to zero dimensions and Mk,N the D(-1)D7 moduli space. Finally Z = 〈I〉 is the

instanton partition function. Later we will also consider correlators of the form 〈TrφJ 〉.
In particular the basic correlator 〈Trφ4〉 will be related to the prepotential of the eight

dimensional theory.

We remark that Φ couples to the D(-1) instantons only through the Yukawa coupling

νT φν. Integration over ν leads to a polynomial dependence on φ. This in particular

allows for generation of phenomenologically interesting Majorana mass terms and Yukawa

couplings in the effective action. This is in sharp contrast with the standard gauge instanton

potentials which fall off to zero in the limit of large vev of the scalar field. Another

important difference with the four-dimensional case is that the weak coupling regime q → 0

corresponds to the large energy limit µ → ∞. This can be seen from the relation q = Λβ4

and the fact that β4 = 1
2(8 − N) < 0, as already pointed out in the introduction.

3 Localization formulae

In this section we review the localization algorithm developed in [33–36] to study integrals

over the instanton moduli space. The main idea is the identification of an equivariantly
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deformed BRST operator Qξ, satisfying Q2
ξ = Lξ with Lξ a Lie derivative on the moduli

space along a vector field ξ belonging to the Cartan of the SO(K) × SO(N) × SO(8)

symmetry group. ξ can be parameterized by ξ = (χi, au, ǫℓ) with i = 1, ..k, u = 1, ..n,

ℓ = 1, ..4 (n = [N/2], k = [K/2]). Choosing a generic ξ the symmetry group is broken to its

Cartan part and the integral is given by the contributions at isolated critical points (the

poles in a contour integral over χi). Physical quantities in the gauge theory are defined by

taking the limit ǫℓ → 0 in order to eliminate the singularity arising from the D(-1) branes

all superposed at the origin. More precisely, the prepotential F (Φ) is given by the formula

F (au) = lim
ǫℓ→0

[

ǫ1ǫ2ǫ3ǫ4 ln
∑

k

Zk(au, ǫℓ)q
k

]

(3.1)

with Zk the instanton partition function. Keeping ǫℓ finite one finds the gravitational

corrections to the Yang-Mills action [49]. The instanton partition function Zk(au, ǫℓ) can

be written as an integral over the instanton moduli space. The integral can be performed

using the localization formula3

Zk =

∫

dMk,Ne−Sinst =

∫

dkχi

SdetQ2
ξ

=

∫

dkχi

∏

Φ

λΦ(χ, a, ǫ)(−)FΦ+1
(3.2)

where Φ labels the Q-multiplet pairs (Φ,Ψ) related by the BRST transformations

QΦ = Ψ QΨ = λΦ(χ, a, ǫ)Φ (3.3)

FΦ = 0 (1) for Φ a bosonic (fermionic) field and λΦ is the eigenvalues of Q2
ξ . It is important

to notice that using Q ∼ µ
1
2 the dimension of the moduli space measure can be written as

dMk,N ∼ µ
1
2
(nF−nB) (3.4)

with nB , nF the number of Q-multiplets with lowest component a boson and a

fermion respectively.

The topological theory for the system discussed in the previous section, describes the

excitations of open strings connecting the various branes with at least one end on the D(-1)

instanton. We denote the fields by ΦAB where the index A = (I, U) runs over all possible

boundaries I = 1, . . . .K (number of D(-1) branes), U = 1, . . . N (number of D7-branes).

In presence of an O7 plane, let us say at x = 0 in the transverse plane, the branes are

distributed symmetrically with respect to it. We denote by xA = (χI , aU ) the positions of

the various branes

χI = (χ1, . . . ., χk;−χ1, . . . ,−χk; 0)

aU = (a1, . . . .an,−a1, . . . .,−an; 0) (3.5)

The last ”0” should be omitted in the case of an even number of branes. The BRST

operator is defined by equivariantly deforming the SUSY algebra by the SO(K) × SO(N)

3The integral over the moduli space follows from the eight dimensional gauge theory after having per-

formed a quadratic saddle point approximation and having substituted the fields with their classical solution

around the saddle. The localization formula is then an exact evaluation of such integral.
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brane symmetry. In addition complete localization requires also a Υ(1)3 deformation inside

the Lorentz SO(8) group parametrized by ǫℓ, ℓ = 1, . . . 4 with
∑

ℓ ǫℓ = 0. More precisely

the Q2-eigenvalue of a field ΦAB can be written as

λΦ = xA − xB + qΦ (3.6)

with qΦ the Υ(1)3 charge of the given field. Taking into account that the presence of the

orientifold halves the degrees of freedom in the covering space the partition function can

then be written as

ZK =

∫

dkχi

′
∏

A,B,Φ

(xA − xB + qΦ)
1
2
(−)FΦ+1

∏

A,Φ

(2xA + qΦ)
1
2
(−)FΦ+1δΦ (3.7)

with δΦ = ± depending on whether the field is even or odd under the orientifold projection.

The primed product runs over all A,B pairs with at least one index on the D(-1) instantons.

The second contribution comes from open strings connecting the D-brane A to its image.

It is important to notice that despite the explicit appearance of square roots, from (3.5)

one can see that each eigenvalue appears twice and therefore the final answer contains no

square roots.

The BRST transformations for the various strings under consideration are:

• D(-1)D(-1) open strings

QBℓ;IJ = Mℓ;IJ QMℓ;IJ = (χIJ + ǫℓ)Bℓ;IJ

Qλc;IJ = Dc;IJ QDc;IJ = (χIJ + sc)λc;IJ (3.8)

with ℓ = 1, ..4, , c = 1, ..4 and

s1 = ǫ2 + ǫ3 s2 = ǫ1 + ǫ3 s3 = ǫ1 + ǫ2 s4 = 0

ǫ1 + ǫ2 + ǫ3 + ǫ4 = 0 (3.9)

In writing the BRST multiplets we group the seven ADHM constraints Ds, s = 1, . . . 7

and the component χ̄ into four complex fields denoted by Dc. In doing this we

should remind that the zero eigenvalues associated to the diagonal field components

(λ4,D4)II should be omitted from the determinant. Alternatively the contribution of

this pair to the partition function can be thought as coming from the Vandermonde

determinant resulting from bringing the field χ into its diagonal form.

The orientifold projection project aℓ and λc on symmetric and antisymmetric matrices

respectively i.e.

δa = + δλ = − (3.10)

This is consistent with the fact that the ADHM contraints Dc can be written in terms

of commutators of aℓ.

– 6 –
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(Φ,Ψ) (−)FΦ δΦ multiplicity qΦ

(Bℓ,Mℓ) + + 8 1
2 K(K + 1) ǫℓ

(λc,Dc) − − 8 1
2 K(K − 1) sc

( ν, h) − 0 2nK 0

Table 1. D(-1)D7 open strings moduli.

• D(-1)D7 open strings

QνIU = hIU QhIU = (χI − aU ) νIU (3.11)

The field h is an auxiliary field needed to close the Q-algebra [50].

4 D(-1)D7 on R
10

In this section we consider a system of K D(-1) branes, N = 2n D7-branes and an O7-

plane realizing a maximal SUSY SO(2n) gauge theory in eight dimensions. The total

symmetry group is then SO(2n)×SO(K). Fields like the fermionic ADHM auxiliary fields

λc transforming in the adjoint of SO(K) group are described by antisymmetric matrices

while instanton positions Bℓ are given in terms of symmetric matrices. The field content in

the instanton moduli space is summarized in table 1. Plugging these data into the general

formula (3.7) one finds the partition function

ZK = NK

∫ k
∏

i=1

dχi

2πi

K
∏

I,J

[

P (χIJ)

Q(χIJ)

]
1
2

K
∏

I=1

[

M(χI)

P (2χI)Q(2χI)

]
1
2

(4.1)

with χIJ = χI − χJ and

P (x) = x1−δx,0

3
∏

a=1

(x + sa),

Q(x) =
4
∏

ℓ=1

(x + ǫℓ)

M(x) =
n
∏

u=1

(x + au) (4.2)

These polynomials give the contribution of the fields λc, Bℓ and ν respectively. Notice

that (−)FΦ = δΦ for Φ = λc, Bℓ explaining why both contributions P (2χI), Q(2χI) come

in the denominator.

– 7 –
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Setting K = 2k and K = 2k + 1 and using (3.5) one finds

Z2k = N2k

∫ k
∏

i=1

dχi

2πi

k
∏

i≤j

P2(χ
−
ij)P2(χ

+
ij)

Q2(χ
−
ij)Q2(χ

+
ij)

k
∏

i=1

M2(χi)

P2(2χi)
(4.3)

Z2k+1 = N2k+1
M(0)

Q2(0)

∫ k
∏

i=1

dχi

2πi

k
∏

i≤j

P2(χ
−
ij)P2(χ

+
ij)

Q2(χ
−
ij)Q2(χ

+
ij)

k
∏

i=1

M2(χi)P2(χi)

P2(2χi)Q2(χi)

with

P2(x) = (−x2)1−δx,0

3
∏

a=1

(s2
a − x2),

Q2(x) =

4
∏

ℓ=1

(ǫ2
ℓ − x2) ,

M2(x) =

n
∏

u=1

(a2
u − x2) ,

N2k =
24(2k)

2kk!
; N2k+1 =

24(2k+1)

2kk!
. (4.4)

Integrals over χi should be supplemented with a pole prescription. Following the four

dimensional analogy we take ǫℓ → ǫℓ + iδℓ with δ1 ≫ δ2 ≫ δ3 ≫ δ4. The prepotential of

the eight dimensional theory can be extracted from the relation

F (au, ǫℓ) = ǫ1ǫ2ǫ3ǫ4 ln
∑

K

ZK(au, ǫℓ)q
K (4.5)

An explicit evaluation of the integrals for the first few instanton contributions leads to

F (a, ǫ) = 8
√

An

(

q +
4

3
q3 An−4 −

5

6
q3 An−5g2 +

1

96
q3 An−6

(

25g2
2 + 34g4

)

+ . . .

)

+q2

(

−2An−2 +
1

4
An−3g2 −

1

64
An−4

(

g2
2 + 2g4

)

+ . . .

)

(4.6)

with Am, m = 1, . . . n the mth elementary symmetric functions of the variables a2
1, . . . , a

2
n:

As =
∑

i1<i2...<is

a2
i1

. . . a2
is

An = a2
1 . . . a2

n A0 = 1 As<0 = 0 (4.7)

Notice that Am form a basis for the Casimirs of SO(2n) . Similarly we parametrize the

SO(8) Casimirs in terms of

g2m =

4
∑

ℓ=1

ǫ2m
ℓ (4.8)

In the appendix we present also 4 and 5 instanton contributions.
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The effective action follows by replacing in the prepotential F the lowest components

au, ǫℓ by the corresponding chiral and gravitational superfields

au → Φu = φu + F u
µνθγµνθ + . . .

ǫℓ → Wℓ = Gℓ + Rℓ
µνθγµνθ + . . . (4.9)

Here we denote by Gℓ the graviphoton with ℓ = 1, ..4 and u = 1, ..n running over

the Cartan subgroup components of the Lorentz SO(8) and gauge SO(2n) symmetry

groups respectively.

The prepotential F (Φ,W ) encodes the chiral dynamics of the d = 8 gauge theory

coupled to gravity. The eight-dimensional effective action follows from F (Φ,W ) upon

integration over the chiral superspace variables

Seff =

∫

d8xd8θ F (Φ,W ) (4.10)

In absence of gravity W = 0, it gives a direct analog of the Seiberg-Witten prepotential

for N = 2 gauge theories in d = 4 dimensions. For instance the F 4 coupling

Seff = τ4(a)

∫

d8x tr t8 F 4 (4.11)

can be expressed as the fourth derivative of the prepotential

τ4(A) =





n
∑

u=1

∂4

∂a4
n

− 1

12

(

n
∑

u=1

∂2

∂a2
n

)2


F (a, 0) (4.12)

Notice that using (3.4) the instanton measure goes like

dM ∼ µ
1
2
(nλ+nν−na) = µK(n−4) (4.13)

This implies that a dimensionless partititon function Z =
∑

K ZKqK can be defined taking

q = µ4−ne2πiτ4 . The prepotential of the eight-dimensional theory defined in terms of

Z(q,A) will then carry a non-trivial dependence on the scale q = Λ4−n generated by the

exotic instantons and on the Casimir invariants An’s parametrizing the moduli space of

the theory. The case n = 4 is special in the sense that q is dimensionless and the theory is

conformal: this is the case that has been studied in details in [32]. We recover in appendix B

their results.

5 D(-1)D7 on R
6

× R
4/Z2

The analysis in the last section can be extended to theories with less supercharges and

lower dimensions. Here we consider the N = 2 case in four-dimensions. This theory can

be realized by considering a set of 2n fractional D7-branes wrapping a R
4/Z2-singularity.

We choose the Z2 orbifold group to act trivially in the Chan Paton indices. This projects

out the gauge components along the four directions acted by the Z2 leaving an effective

– 9 –
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four-dimensional theory with N = 2 supersymmetries. On the instanton moduli space the

orbifold groups acts like

a3,4 → −a3,4 M3,4 → −M3,4 λ1,2 → −λ1,2 D1,2 → −D1,2 (5.1)

with no action on the Chan-Paton indices and all the other fields invariant. In the language

of fractional branes this corresponds to take (n0, n1) = (2n, 0) D7-branes and (k0, k1) =

(K, 0) D(-1) branes.

The partition function follows now from the previous results by simply suppressing

the contribution of the odd fields. The results are given again by (4.3) but with the

characteristic functions replaced by

P2(x) = x2−2δx,0(x2 − ǫ2)

Q2(x) = (x2 − ǫ2
1)(x

2 − ǫ2
2)

M2(x) =

n
∏

u=1

(x2 − a2
u) (5.2)

and ǫ = ǫ1 + ǫ2.

Now the prepotential defines the four-dimensional effective action

Seff =

∫

d4xd4θ F (Φ,W ) = τ2(A)

∫

d4x tr F 2 + . . . (5.3)

where τ2(A) is given by the second derivative of the prepotential. Notice that despite the

similarities the instantons contributing to τ2(A) are exotic and therefore the structure of

τ2(A) will be very different from that following from Seiberg-Witten type geometries. In

particular, on the contrary of the prepotentials found in [51, 52], the Casimir Am’s appear

in τ2(A) only in a polynomial form.

The first terms in the expansion of the prepotential in the instanton winding number

are given by

F (a, ǫ) = 2
√

An

[

q +
1

3
q3

(

An−2 − An−3

(

7

4
g2 +

9

4
ǫ1ǫ2

)

+An−4

(

13

32
g4 +

49

32
g2
2 +

45

16
g2ǫ1ǫ2

))

+ · · ·
]

(5.4)

+
1

2
q2

[

An−1 − An−2

(

1

4
g2 +

1

4
ǫ1ǫ2

)

+ An−3

(

1

16
g4 +

1

16
g2ǫ1ǫ2

)

]

+ · · · ,

where g2 = ǫ2
1 + ǫ2

2 and g4 = ǫ4
1 + ǫ4

2, The case of SO(4) gauge group is of particular

interest. In this case the theory is conformal and the instanton parameter q dimensionless.

Calculation of up to q7 terms suggests that the all orders exact prepotential is

FSO(4)(φ,G) = Pf φ log
1 + q

1 − q
+

(

1

4
tr φ2 − 1

16
tr G2 +

1

8
Pf G

)

log (1 − q2) ,

(5.5)

where

tr φ2 = −2(a2
1 + a2

2); tr G2 = −2g2; Pf G = ǫ1ǫ2 . (5.6)

– 10 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
1

6 Chiral ring

The techniques developed in the previous sections apply as well to the computation of

the general chiral correlator tr φJ in the gauge theory. These correlators constitute the so

called ”chiral ring”. In complete analogy with the 4 d N = 2 SYM [37–39], the generating

function tr exp(λφ) of the chiral correlators 〈tr φJ〉 can be represented as

〈tr eλφ〉 = 〈tr eλφ〉cl +
1

Z

∑

K

qK

∫

dkχ
∑

i

∏

ℓ

(1 − T λ
ℓ ) eλχiZK(χ) , (6.1)

where the factors (1 − T λ
ℓ ) with Tℓ ≡ eǫℓ properly take care of the volume factor.4 ZK is

the integrand in the instanton partition functions (4.3) and

Z =
∑

K

qK

∫

dkχZK(χ) (6.2)

is the partition function. Thus to compute a specific correlator 〈tr φJ〉 in the contour

integral one makes an insertion

OJ,K({χI}) =

K
∑

I=1



χJ
I −

4
∑

i=1

(χI + ǫi)
J +

4
∑

i<j

(χI + ǫi + ǫj)
J (6.3)

−
4
∑

i<j<k

(χI + ǫi + ǫj + ǫk)
J + (χI + ǫ1 + ǫ2 + ǫ3 + ǫ4)

J





so that

〈tr φJ〉 =
1

Z

∑

K

qK

∫

dkχZK(χ)OJ,K({χ}) (6.4)

Remarkably, the normalized correlators are, unlike the partition function Z itself, well

defined even at the limit when ǫ’s vanish. Direct calculations up to q3 are not difficult:

〈tr φ2〉 = −2
n
∑

u=1

a2
u

〈tr φ4〉 = 2

n
∑

u=1

a4
u + 192

√

An q − 96An−2 q2 + 768
√

An An−4 q3 + · · ·

〈tr φ6〉 = −2
n
∑

u=1

a6
u + 1440An−1 q2 − 7680

√

An An−3 q3 + · · ·

〈tr φ8〉 = 2

n
∑

u=1

a8
u − 6720An q2 + 35840

√

An An−2 q3 + · · · (6.5)

where the first term gives the classical contribution to the correlator. To avoid lengthy

expressions we did not present the gravitational corrections here but they can be obtained

in a similar way.

4The domain of integration of (6.1) is the entire moduli space. The latter includes also the space-time

translational zero modes whose contribution is cancelled by
Q

ℓ
(1 − Tℓ).
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The first non trivial correlator 〈tr φ4〉 in the list can be related to the derivative of the

prepotential. This can be seen using the identity

O4,K({χI}) = 24K ǫ1ǫ2ǫ3ǫ4 (6.6)

that implies

〈tr φ4〉 = 2
n
∑

u=1

a4
u + 24 q∂qF = tr φ4

cl + 24
∑

K

KFKqK (6.7)

Alternatively this can be seen by noticing that each φ ∼ Fµνθγµν in tr φ4 soaks precisely two

out of the eight fermionic zero modes in the instanton background and therefore all together

the amplitude in the K-instanton sector is given by
∫

t8tr F 4 ∼ K time the normalized

centered partition function FK [53]. The remaining correlators tr φJ with J > 4 give new

informations about the chiral ring of the theory beyond the prepotential.

In a similar way we can compute chiral correlators in the case of R
6×R

4/Z2. Now the

relevant insertion is

OJ (χI ,K) =
K
∑

I=1

[

χJ
I − (χI + ǫ1)

J − (χI + ǫ2)
J + (χI + ǫ1 + ǫ2)

J
]

(6.8)

and one finds

〈tr φ2〉 = −
n
∑

u=1

2a2
u − 4

√

An q − 2An−1 q2 − 4
√

An An−2 q3

−2(An−2An−1 + 5AnAn−3)q
4

−4
√

An (A2
n−2 + 3An−1An−3) q5 + · · ·

〈tr φ4〉 =
n
∑

u=1

2a4
u − 12An q2 − 16

√

An An−1 q3

−6(A2
n−1 + 6AnAn−2)q

4 − 48(An−1An−2 + AnAn−3)q
5 + · · ·

〈tr φ6〉 = −
n
∑

u=1

2a6
u − 40

√

An An q3 − 90AnAn−1q
4

−72
√

An (A2
n−1 + 3AnAn−2 )q5 + · · ·

〈tr φ8〉 =

n
∑

u=1

2a8
u − 140A2

nq4 − 448
√

An An An−1q
5 + · · · (6.9)

In this case the Matone relation takes the form

〈tr φ2〉 = −2

n
∑

u=1

a2
u − 2q∂qF (6.10)

Note also that calculations up to q7 strongly suggest that in the conformal case SO(4)

the exact expression for the 〈tr φ2〉 is

〈tr φ2〉 = −2

(

a2
1 + a2

2 −
1

4
q2(ǫ2

1 + ǫ1ǫ2 + ǫ2
2)

)

1

1 − q2
− 4a1a2

q

1 − q2
. (6.11)

This result is easily derived from (5.5) after taking the derivative with respect to q, accord-

ing to (6.10).
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A SO(2n) prepotential

Here we give the expression for (4.6) up to 5 instantons (i.e. up to q5) and up to the 4th

order in the gravitational corrections

F (au, ǫℓ) =

8
√

Anq + q2

(

−2An−2 +
1

4
An−3g2 −

1

64
An−4(g

2
2 + 2g4)

)

+8
√

Anq3

(

4

3
An−4 −

5

6
An−5g2 +

1

96
An−6(25g

2
2 + 34g4)

)

+q4

[

− 1

2
A2

n−3 − An−2An−4 − 17An−1An−5 − 113AnAn−6

+
1

8
(3An−3An−4 + 19An−2An−5 + 195An−1An−6 + 1491AnAn−7)g2

− 3

128
A2

n−4(g
2
2 + 2g4) −

1

64
An−3An−5(15g

2
2 + 14g4)

− 3

64
An−2An−6(41g

2
2 + 50g4) −

3

64
An−1An−7(389g

2
2 + 442g4)

− 1

64
AnAn−8(9515g

2
2 + 11414g4)

]

+8
√

Anq5

[

4

5

(

3

2
A2

n−4+7An−3An−5+23An−2An−6+87An−1An−7+263AnAn−8

)

+
1

2
(−9An−4An−5−29An−3An−6−109An−2An−7−413An−1An−8−1389AnAn−9)g2

+
1

160
A2

n−5(205g
2
2 + 218g4) +

3

80
An−4An−6(145g

2
2 + 154g4)

+
1

80
An−3An−7(1625g

2
2 + 1738g4) +

1

80
An−2An−8(6325g

2
2 + 6802g4) (A.1)

+
1

80
An−1An−9(24265g

2
2 + 26378g4) +

1

80
AnAn−10(86645g

2
2 + 97522g4)

]

+ · · · (A.2)
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B SO(8) case

The case n = 4 is special in the sense that q is dimensionless and the theory is conformal.

Putting n = 4 in (A.2) and promoting the expectation values to the respective fields,

tr φ2 = −2

4
∑

u=1

a2
u ; tr φ4 = 2

4
∑

u=1

a4
u ;

tr G2 = −2

4
∑

ℓ=1

ǫ2
ℓ ; tr G4 = 2

4
∑

ℓ=1

ǫ4
ℓ (B.1)

one finds

F (φ,G) = 8Pfφ

(

q +
4

3
q3 +

6

5
q5 + · · ·

)

+
1

2
tr φ4

(

q2 +
1

2
q4 + · · ·

)

− 1

4

(

tr φ2
)2

(q2 + q4 + · · · )

+

(

1

16
tr φ2 tr G2 − 1

64
tr G4 − 1

256
(tr G2)2

)(

q2 +
3

2
q4 + · · ·

)

This suggests that the exact expression in all orders of q would be

F (φ,G) =

∞
∑

k=0







8Pfφ
∑

l|2k+1

1

l
q2k+1

+
1

2
trφ4

∑

l|k

1

l

(

q2k − q4k
)

− 1

4

(

tr φ2
)2∑

l|k

1

l

(

q2k − 1

2
q4k

)

+

(

1

16
tr φ2 tr G2 − 1

64
tr G4 − 1

256

(

tr G2
)2
)

∑

l|k

1

l
q2k







(B.2)

in agreement with the heterotic results [40–47] ( up to normalizations of fields and traces)

∆F 4 = − log
|η(T )|4
|η(T

2 )|4
+ . . .

∆(F 2)2 = −1

2
log

T2U2|η(T/2)|8|η(U)|4
|η(T )|4 + . . .

∆R4 = 4∆(R2)2 = 2∆R2F 2 = − 1

16
log T2U2|η(T/2)|4|η(U)|8 + . . . (B.3)

where dots refer to moduli independent contributions.
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[49] M. Billó, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the

topological string, JHEP 11 (2006) 012 [hep-th/0606013] [SPIRES].

[50] F. Fucito, J.F. Morales and A. Tanzini, D-instanton probes of non-conformal geometries,

JHEP 07 (2001) 012 [hep-th/0106061] [SPIRES].

[51] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].

[52] N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2

supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430

(1994) 485] [hep-th/9407087] [SPIRES].

[53] F. Fucito and G. Travaglini, Instanton calculus and nonperturbative relations in N = 2

supersymmetric gauge theories, Phys. Rev. D 55 (1997) 1099 [hep-th/9605215] [SPIRES].

– 17 –

http://arxiv.org/abs/hep-th/9804176
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9804176
http://dx.doi.org/10.1016/S0550-3213(97)00639-1
http://arxiv.org/abs/hep-th/9707126
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9707126
http://arxiv.org/abs/hep-th/9611205
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9611205
http://arxiv.org/abs/hep-th/9812154
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9812154
http://dx.doi.org/10.1016/S0550-3213(99)00751-8
http://arxiv.org/abs/hep-th/9908125
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908125
http://dx.doi.org/10.1103/PhysRevD.60.126001
http://arxiv.org/abs/hep-th/9905173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905173
http://dx.doi.org/10.1088/1126-6708/2000/08/035
http://arxiv.org/abs/hep-th/0006176
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0006176
http://dx.doi.org/10.1088/1126-6708/2006/11/012
http://arxiv.org/abs/hep-th/0606013
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606013
http://dx.doi.org/10.1088/1126-6708/2001/07/012
http://arxiv.org/abs/hep-th/0106061
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0106061
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9408099
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9407087
http://dx.doi.org/10.1103/PhysRevD.55.1099
http://arxiv.org/abs/hep-th/9605215
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605215

	Introduction
	Eight dimensional instantons 
	Localization formulae
	D(-1)D7 on R*10 
	D(-1)D7 on R*6 x R*4/Z(2)
	Chiral ring
	SO(2n) prepotential
	SO(8) case

